Sunday, 21 August 2016

Anti Diagonals

Give a N*N square matrix, return an array of its anti-diagonals.
Input:  
1 2 3
4 5 6
7 8 9
Output :
[ 
  [1],
  [2, 4],
  [3, 5, 7],
  [6, 8],
  [9]
]
Approach : The point to observe here is that the sum of i (row number) and j (column number) is constant for each anti-diagonal.
For example:
Diagonal 1 has i + j = 0
Diagonal 2 has i + j = 1 
and so on.
So define s = i + j
Loop with s from 0 to 2*(N-1) (maximum sum possible) 
Now if s = i+j then j = s-i 
So we have reduced the problem to two variables: s and i (O(n^2)).


 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
vector<vector<int> > Solution::diagonal(vector<vector<int> > &A) {

    vector<vector<int>> result;
    vector<int> diagonal;
    
    int n = A.size();
    if(n == 0)
        return result;
    for(int d = 0; d <= 2*(n-1); d++) {
       for(int i = 0; i <= d; i++) {
           int j = d - i;
           //continue if i or j exceeds their bounds
           if(i >= n || j >= n)
                continue;
           diagonal.push_back(A[i][j]);
       }
       result.push_back(diagonal);
       diagonal.clear();
   }
   return result;
}
Share:

3 comments:

  1. int n=A.size();
    int N=2*(n-1)+1;
    vector>result(N);
    for(int i=0;i<n;i++)
    {
    for(int j=0;j<n;j++)
    {
    result[i+j].push_back(A[i][j]);
    }
    }
    return result;

    ReplyDelete
  2. Easy implementation


    int n=A.size();
    int N=2*(n-1)+1;
    vector>result(N);
    for(int i=0;i<n;i++)
    {
    for(int j=0;j<n;j++)
    {
    result[i+j].push_back(A[i][j]);
    }
    }
    return result;

    ReplyDelete

Contact Me

Name

Email *

Message *

Popular Posts